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Chebyshev-Type Integration Rules of Minimum Norm 

By Philip Rabinowitz and Nira Richter 

Abstract. Equal-weight integration rules are studied in the context of certain families of 
Hilbert spaces of analytic functions defined in a family of confocal ellipses containing 
the interval of integration. Rules which minimize the norm of the error functional in these 
spaces are shown to exist and several such rules are tabulated. Asymptotic properties of 
these rules are studied for ellipses shrinking to the integration interval and for ellipses 
expanding to cover the entire plane. In the latter case, an algebraic formulation for these 
asymptotic rules is given and it is shown that they agree with the classical Chebyshev 
integration rules whenever such rules exist. 

1. Introduction. The classical Chebyshev integration problem is to find distinct 
real abscissae x,, i = 1, - - *, n, and a weight w such that, in the formula 

1(0) | f(x) dx = w 2 f(xi) + Ejq ) RR(f) + En(@j* 

the error term E,(f) vanishes for all polynomials of degree ?n. It turns out that this 
problem only has a solution for n = 1(1)7 and n = 9, and that in these cases w = 2/n. 
For all other values of n, some of the abscissae, which are the roots of a certain 
polynomial, turn out to be complex. In the sequel, we shall call any integration rule 
of the form 

R.,,) = w E (x,)9 -I xl < Xs < ** < X. 1 
i-I 

a Chebyshev-type integration rule (CIR), while a rule of the same form in which we 
permit equality among abscissae will be called a generalized Chebyshev-type inte- 
gration rule (GCIR). These latter come up as limiting forms of sequences of CIR's 
in various contexts. 

In addition to the classical requirements on integration rules that they be exact 
for polynomials up to a specific degree, other criteria for integration rules have been 
proposed in recent years, among these being the requirement that they minimize 
the norm of the error functional Ejf in a certain space. Rules with such a minimizing 
property are called optimal rules or minimal rules and have been discussed by various 
authors [1], [5], [7], [8]. To the authors' knowledge, the only work on CIR's with such 
minimal properties is that by Barnhill et al. [2] who computed CIR's which minimize 
the function 

[E E - f0X)] I 
- O 

Received November 14, 1969. 
AMS 1969 subject classifications. Primary 6555. 
Key words and phrases. Chebyshev integration rules, minimum norm rules, norm of error 

functional, Hilbert space, analytic functions, asymptotic integration rules, equal-weight integration 
rules. 

Copyright @ 1971, American Mathematical Society 

831 



832 PHILIP RABINOWITZ AND NIRA RICHTER 

where n < k ? o . For k = n, these rules turned out to be the classical rules, when 
such rules existed. In the other cases, the rules turned out to be GCIR's. 

In the present work, we shall be concerned with CIR's which minimize the norm 
of En(f) in two families of Hilbert spaces. Each family is a one-parameter family of 
Hilbert spaces of functions analytic in 8P, p > 1, where &P is the ellipse in the complex 
plane with foci at (4 1, 0) and semimajor axis a = 2(Vp + 1/ IVp). One family of 
spaces, L2( p), is defined by the norm 

tlll = [fI tf(z)I1 dx dy] 

and the other, H2(8p), by the norm 

I 1/2 

Itfil = I If(Z)t 11 - Z21-1/2dzI 

Our main interest will be the asymptotic behavior of minimal CIR's in the two cases: 
(a) p co, 

(b) p 1. 
In case (a), the two sets of minimal CIR's corresponding to L2( ,) and H2(8p) tend 

to the same limit, namely, to a rule which integrates as many monomials as possible, 
and if this number is less than n + 1, to a rule which integrates the next monomial 
with a minimal error. In the first instance, we recover the classical Chebyshev rules. 
In the second, we arrive at GCIR's. 

In case (b), we consider the asymptotic behavior of two classes of rules in each 
family of spaces: 

(1) Minimal CIR's. 
(2) CIR's minimal in the class of rules which integrate constants exactly, i.e., 

rules such that w = 2/n. This distinction in case (a) is of no interest since the limiting 
rule there belongs to class (2). The asymptotic behavior for p -? 1 is derived using 
some of the results in [7] which we quote without proof. 

In Section 2, we formulate the problem and prove the existence of the GCIR's. 
In Section 3, we characterize the asymptotic minimal GCIR's for p -+ c. In Section 4, 
we give an algebraic approach for computing the rules discussed in Section 3, for 
n = 8, 10, 11, 12, 13. In Section 5, we prove four theorems about the asymptotic 
behavior as p -? 1 of minimal GCIR's in L2(&P) and H(8p). Finally, in Section 6, we 
give tables of the rules discussed in Section 4 and tables of minimal CIR's for p 
approaching 1+ to illustrate the theoretical results of Section 5. 

2. Formulation of the Problem. Let gP designate the ellipse with foci at (: 1, 0), 
semimajor axis a and semiminor axis b = (a2 - 1)1/2 where p = (a + b)2. The two 
families of Hilbert spaces to be considered are the following: 

(1) L2(pf)-the collection of all functions f(z) analytic in &P, p > 1, such that 

Il tf(z)12dxdy < C, 

with the scalar product 

(j, g) = fff(z)g(z) dx dy. 
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(2) H2(&,)-the collection of all functions f(z) analytic in 8, p > 1, such that 

I f(Z) 12 I z21-1/2 tdzI < o 

with the scalar product 

(f, g) = LI. f(z)g(z) 1I z21-1/2 Idz 

A complete orthonormal set {Pm(z)} for L2(&p) is given by suitably normalized 
Chebyshev polynomials of the second kind [3, p. 241]: 

( 1 ) Pm(Z) = [,m + Ip ] Um(Z) m = 0, 1, 2, ... 

where Um(z) = sin (m + 1)0/sin 0 with z = cos 0. For H2(8p), a complete ortho- 
normal set {Pm(z)} is given by suitably normalized Chebyshev polynomials of the 
first kind [3, p. 240]: 

(2) Pm(Z) = < [pm + -m]/Tm(Z)I m = 1, 2, 

PO(z) = 1/(2X) , 

where Tm(z) = cos nO with z = cos 0. 
By the Riesz representation theorem, any bounded linear functional L in a 

Hilbert space H determines a unique element I E H, called the representer of L, 
such that, for any f E H, 

LO) = (f, 1) and IILII = 11111. 

The error in a given integration rule with abscissae in [-1, 1] is a bounded linear 
functional E in both L2(& ) and H2(& ). Hence, there is a representer of this func- 
tional in each space. For a GCIR with abscissae xl, * *, x,, and weight w, the rep- 
resenter is 

r(z) = k(z) - fv- Ej ,(z), 
i-l 

where ?(z) is the representer of the linear functional 

If= f(x) dx, 

and Pz(z) is the representer of the point functional 

L.,f = f(xi). 

Since in both spaces, convergence in norm implies pointwise convergence, the 
above representers can be expressed in terms of the complete orthonormal set: 

Co 1 

?= E [ Pm(x) dx]Pm(z), 

(3) OXi(z) = E Pm(Xi)Pm(Z), 
mn-O 
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r(z) = E: [E(P,,)1P.(z). 
T-O 

For a given set of abscissae, the problem of determining the weight w for which 
the error functional E is of minimum norm is thus equivalent to the problem of 
best approximating the function ?(z) by the single function 

A(z) = ox +,(z)@ 
il- 

Hence, w is determined by the condition: 

(q 
- 

ii 
SciX;, Skzi) = O 

and is given explicitly by: 

(4) = (n, Z n_, 

The norm of the corresponding error functional is given by 

(5) EIIl2 = I1r1I2 = (r,r)= ,0) - w(t, Oxic j 

By (1), (2), (3), (4), w is a real continuous function of the n abscissae as is, therefore, 
the norm of the corresponding error functional. Since a real continuous function 
attains its minimum value relative to a compact domain at a point therein, the 
existence of a point (xi, * * * , xn) in the hypercube Sn: -1 _ xi ? 1 for which the 
norm of the corresponding error functional is a minimum is guaranteed. 

Similar arguments prove the existence of a minimal GCIR in the class of rules 
which integrate constants exactly, since in this case w = 2/n, and the norm of the 
error functional is a real continuous function in Sn. We formulate these observations 
in the following theorem: 

THEOREM 1. For any p > 1, there exists an unconstrained minimal GCIR and a 
constrained minimal GCIR with w = 2/n in each of the spaces L2(8D) H2(,P). 

We remark that although we have only been able to prove the existence of minimal 
GCIR's, nevertheless, in practice, these minimal rules turn out to be CIR's. We 
therefore conjecture that for every p > 1, the minimal GCIR is indeed a CIR, both 
in the constrained and unconstrained cases in L2( p) and H2( P). 

3. Asymptotic Behavior as p -a oo. The following theorem characterizes the 
asymptotic behavior of GCIR's as p -* co: 

THEOREM 2. As p -> a, the minimal GCIR's with n abscissae in both L2(&p) and 
H2(8p) tend to the same GCIR, Ra, with the following properties: 

(1) En(xt) = 0, i - 0, 1, .. , k - 1, for as large a value of k as possible. 
(2) Jf k < n, then IE,(xk) is minimal. 
In particular, w is given by 2/n. 
Proof. The norm of the error functional is given, using (3), by: 

co co 1 n2 

ril2 = (r, r) = Z IEn(Pm)12 = E [ Pm(X) dx - w E P(Xi)j. 
m-o m0o -1 
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In L2(8p), this norm has the form: 

4 r0 m+1 
I IrL|| = I [r+i -m- En( Ur)1 

and in H2(S), the form 

lirHil = ; E [pm-+4 -m En(Tm)] 

where the prime indicates that the term for m = 0 is to be halved. 
For p -*> , the asymptotic expressions of the two norms are: 

flrLII = ( 4(kl -) 1/2 IE (Uk)I p(k+l)/2 + o(p-(k+2)/2) 

| irHi l = ( (l ?-2k)) {En(T*)| V-'/2 + O(P-(k+l)/2) 

where k is the degree of the first polynomial in the orthonormal sequence which is 
not integrated exactly. Now the larger k is, the smaller I Ir I becomes. Hence the 
asymptotic rule Rn, which minimizes I Irl , integrates as many polynomials in the 
sequence as possible. If k < n + 1, there are n - k + 1 free parameters at our 
disposal which are used so as to minimize IEn(PJ). 

Now, the conditions E&(P3) =O j = 0, 1, - * *, k - 1, are equivalent to the con- 
ditions En(x') = 0, j = 0, 1, * , k - 1. This implies that the parameter set which 
minimizes IEn(Pk)I subject to the constraints En(P,) = 0, j = 0, 1, * * *, k - 1, is 
identical to the set which minimizes IEn(xk) I subject to the constraints En(x') = 
0, j = 0, 1, * * *, k - 1. Hence, the resulting rule is of degree k - 1. By choosing 
w = 2/n, we are assured that k > 0. 

Theorem 2 gives an algebraic characterization of the asymptotic rule, which 
suggests an algebraic approach to the problem of determining such rules explicitly 
for various values of n. Another possibility is to compute minimal GCIR's for a 
sequence of monotonically increasing values of p, by minimizing the norm of the 
error functional as a function of the weight and abscissae. This numerical approach 
failed for those values of n for which classical rules do not exist, since the norms 
have many local minima, corresponding to rules which are exact for the maximal 
number of monomials. 

4. The Algebraic Approach. The abscissae, xi, i = 1, * , n, and weight w 
of the asymptotic GCIR, for p > ao, satisfy the following conditions: 

w = 1 f(-1Y 

and the corresponding rule RX is of degree k- 1. Taking w = 2/n to satisfy the 
condition for j = 0, we rewrite the other conditions in the form 

n 
(6) E x, (i+$ [I + (- oi] _ ai, =1, * , - 1. 
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Let 

Qn(x) = II (x - xi) - a,,-ix' ao = 1, 
-i io-0 

then a0, al, *., a, satisfy the following recurrence formula [6, p. 356] 

(7) rar + czja.a7 + a2a,-2 + **+ lao + ar = 0, r = 1, -** k-1. 

For the case k = n + 1, a,, *., an are determined by (7) and the roots of Qn(x) 
are the abscissae of the integration rule. Since En xi = 0 for j odd, the resulting 
rule is symmetric. 

For nonclassical rules which occur when the roots of Qn(x) are not all real, we 
have that k < n + 1 and the following considerations apply: 

Let da, *..., an, denote the coefficients obtained using (6) and (7). In order that 
k be as large as possible, we must retain as many coefficients as possible in the above 
sequence, at the same time ensuring that the polynomial Q,,(x) possesses n real roots, 
preferably in [-1, 1]. 

For a rule of degree k - 1, the corresponding polynomial Q,,(x) is a function 
of the n + 1 - k parameters a1, , an, namely: 

k-1 

Qn(x) = Qn(x; ak,* an) =x + k-ix 
n E aix 

i=1 i=k 

The parameters a,, . * *, an are to be chosen to satisfy the following two requirements: 

(1) Qn(x) has n real roots, 
(2) IE,,(x1)l is a minimum. 

Using (7) to express lx in terms of the coefficients of Qn(x), we write IE,,(xk)j 
as follows: 

I + +( I)k 2 E 
I + (_ 1 2 2-i 

.(Xk k+ --Iaairk-+ 2ak, 1fl~~X + I=nk +1I n j-1 

where a, * , a,,-, are defined by (6). Thus, IEn (xk)I is independent of a,+,, a.* , 

and, since the right-hand side of the above equation vanishes for aA = Cl, we see 
that the closer ak is to a 1, the smaller JEn(xk) will be. 

Since k is not known a priori, we proceed as follows: For n even, we first set 
k n, so that Q,,(x) = Q,,(x, a,,) and Ql(x) is independent of a.. Let T1, 
be the (not necessarily distinct) real roots of Ql(x). The following two conditions 
are necessary and sufficient that there exist an such that Qn(x) = x S ? - a-xn- ? 
a,, possess n real roots: 

(a) m = n - 1 

(b) r max Qn(i, 0) < min Qn(ri, 0) S. 
l1z9 m;5l;Qnt '(3r)>? l;5iim;9M;QA '(ri) <? 

(This can be seen most clearly from the graph of Qn(x).) Condition (a) holds for 
n = 8, 10, 12 while condition (b) holds only for n = 8, 10. 

When both (a) and (b) hold, the a, which lies in [-s, -r] and is closest to an is 
the required value which we denote by a*. Since a,, X [-s, -r], it follows that a* 

is one of the endpoints of [-s, -r] and yields a double root for Qn(x). Since Qn(x) 
is a symmetric polynomial, the rule Rn will have one double node when the double 
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root of Qn(x; a*.) is at x = 0 (n = 8) and two double nodes, otherwise (n = 10). 
For n = 12, k < n since s < r. Now k = n - 1 is not possible since any change in 

a.-, is equivalent to the addition of a linear function to the even function Qn(x; dn, 0) 
and this operation cannot reverse the relation s < r. Hence, the next trial value is 
k = n - 2, which corresponds to a change in a,,2. Since for &2s - r < 0, we take 
a*_2 to be the closest value to ad.2 for which s - r ? 0, where r, s correspond to 
Q.(x; a.-2,0, 0). For this value of an*2, r = s, a* is taken to be -s and the resulting 
Rn has two double nodes in each half-interval, since it is symmetric. 

The procedure for n odd is similar, but starts with k = n - 1, since if k = n + 1 
is rejected, then k = n cannot hold because, in this case, s = - r < 0. For n = 11, 
13, Q"'(x) has n - 2 roots in [-1, 1] and r, < s1 where r, and s1 are the analogues 
of r and s with respect to Q'(x; 0). By confining at,* to the interval [-s1, -r1], we 
guarantee that Q'(x; a*_) has n - 1 roots in [-1, 1] and thus it remains to choose 
a.L, to be the closest value to dn1- in [-si, -rl], subject to the condition that s - 

r _ 0. Since this occurs when s - r = 0, we found a*_1 by treating s - r as a func- 
tion of a,,- and using the method of bisection to obtain the desired root. 

The resulting polynomial Qn(x; a* 1, 0) is odd so that r = -s and since s - 

r = 0, we have that r = s = 0 and hence a* = 0. Thus, the integration rule is sym- 
metric with one double node in each half-interval. 

In Table 2, we give the abscissae of the five rules computed for n = 8, 10, 11, 12, 13. 
Since all the rules are symmetric, only nonnegative abscissae are tabulated. 

5. Asymptotic Behavior as p -* 1. 
(I) The Spaces L2(& ), p > 1. In this family of spaces, the representers (3) can 

be written explicitly, using (1) as: 

(9)(z) 
o 

(p2rm+l _ p-2m-1)-i U2m(Z), 
T m=O 

(10) 4)i (Z) = E (m + 1)(Pm+l _-r- )Um(Xi) Um(Z). 
T m=0 

Using the following result derived in [7]: 
For p - l and -1 < xi, xi < 1, 

co 

p l/p) 2(p2+1 )-2m- U2m(X) = 2 x,) + o(l), 

oo0 2 

(( m+1 - "-n")-l Um(Xi) Um(Xi) = L ai(l - x2)- + o(1), 
M-0 4 

we find the asymptotic behavior of the following scalar products, for -1 < xi, xi < 1: 

(11) (p - (0, ci) = (p (xi) = 2(1 -xi + o(l), 

( --) (?5iS cP5) = 
(p--)245j(Xi) 

= 
ir3ii(l 

- 
x2)l + o(l). 

Inserting these expressions into (4), we find the minimizing weight w corresponding 
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to a given set of abscissae xl, * , x, in (-1, 1) to be: 

(12) W = (n) . 4), 2, [2 - 2-1 + o()l)(p - 

_LI- A. ilA. il(-Xi) 

By (5) and (11), the norm of the corresponding error functional is given by 

) 4 ,_1 I xi)2_]+ol 

with 

(4), 4)) = f +(x) dx = - [2, + o(1)]. 

The set of abscissae of the asymptotic minimal rule is clearly that set for which 

t-1 (1 - X)' 

is maximal. By the Cauchy-Schwarz inequality, we have that 

[ n_, (1 - x2) /2 n i, (1 - x,) 

Es- (1 X)1 En_, (1-X)-1 

and equality is possible only for xi = is, i = 1, *., n, for a fixed value t7 with 
tnt < 1. These results yield the following theorem: 

THEOREM 3. For a set of n abscissae in (-1, 1), the minimizing weight w of the 
corresponding GCIR tends to zero, as p -+ 1, according to (12) and the norm of the 
error functional of this GCIR is asymptotically 14) II, where 

11411 = P- 
I 

[(27r) ' + o(l)]. 

All the abscissae of the minimal GCIR tend, as p -* 1, to a single point or two sym- 
metric points, but the location of these points is unknown. The amount by which (r, r) 
is reduced per abscissa is 4/r + o(l) which is negligible in the limit. 

Remark. This latter quantity is identical with the asymptotic amount by which 
any abscissa in the general minimal integration rule reduces (r, r) [7]. 

For a GC1R with w 2/n, the norm of the error functional is given by: 

4 " 4'3 
(r. r) 0)b- E (+,+ Xi) + a2 1 (Oxi xi) n m,_ n j. ,-ml 

= [2w -_ 8 E (1 x2)-1/2 + o(1)j(p- 

+ [4r (1 x2)' + o()](p 
1 

This yields the corresponding theorem. 
THEOREM 4. The abscissae in the minimal GCIR, constrained by w = 2/n, tend 

to zero as p -- 1. Each point in this asymptotic rule contributes 
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n + o(l) p - 
p 

to the value of (r, r). 
(II) The Spaces H2(8p), p > 1. In this family of spaces, the representers (3) can 

be written explicitly using (2) as: 

(13) = 4 c 
((1 - 4m2)(p2" + p-2m)]V1T2.(z)' 

7r m- 

(14) 2xi(Z) = i (ptm + pmY)4lTM(X)T(z) 
T m-0 

Using the following result derived in [7]: 
For p -->1+ and -1 < xi, xi < 1, 

aI' (1 - 4M2)1(p22m + p-2m)mlT2m(Xi) = 7r(1 -X)112 + o(1), 
m-0 

p Ei' (ptm + p-mn)-1T.(X)T.(Xi) = Si, + o(1), 

we find the asymptotic behavior of the following scalar products for -1 < xi, xi < 1: 

(k, (k;) = ((Xi)= -(1 _x2)1'2 + o(1), 

(15) (P - !)()i. ) = (p - oi(xi) = 2 + o(1). 

Inserting these expressions into (4), we find the minimizing weight w corresponding 
to a given set of abscissae x1, * *, xn in (-1, 1) to be: 

(16) w 1 A = B E (1 - xi)1/2 + o()l(p -- 

(E i n - -\ P1 

By (5) and (15), the norm of the corresponding error functional is given by 

(17) (r, r) = - [ I (I (1 - 4)1/2) + o(1)](p -), 

with (4, 4) = fL1 (x) dx = 7r/4 + o(l). 
By (17), the abscissae of the minimal GCIR's tend to zero since the choice xi- 

0, i = 1, *., n, maximizes the quantity 

T O ME 

(i 

- 

X2)12)1 

. 

These results yield the following theorem: 
THEOREM 5. For a set of n abscissae in (-1, 1), the minimizing weight w of the 

corresponding GCIR tends to zero, as p -+ 1, according to (16) and the norm of the 
error functional of this GCIR tends to 7r/4. All the abscissae of the minimal GCIR 
tend to zero as p -> 1 and the amount by which (r, r) is reduced per abscissa is asymp- 
totically '(p - l/p) which is negligible in the limit. 

Remark. This latter quantity is identical with the asymptotic amount by which 
any abscissa in the general minimal integration rule reduces (r, r) [7]. 
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a .3 6 

Abscissa Abscissae 

2.0 .7082893 .8659204 .4266340 .2610872 

1.5 .7115646 .8649953 .4374460 .2459727 

1.1 .7137813 .8628399 .4882539 .1787740 

1.03 .6165277 .8558165 .5212156 .1745388 

1.01 .4359713 .7698833 .4736271 .1595859 

1.001 .1906934 .3986599 .2348115 .0777661 

1.0001 .0781855 .1712035 .1003360 .0331459 

TABLE 5: Minimal CIR's with w = 2 in L2(p 

n~~~~~~~~~~ 

a 3 6 

Abscissa Abscissae 

2.0 .7070938 .8658352 .4275668 .2598389 

1.5 .7068802 .8645912 .4401770 .2423468 

1.1 .6916330 .8555244 .4856001 .1786628 

1.03 .6351125 .8394149 .5000705 .1668131 

1.01 .5519235 .7984626 .4858830 .1626058 

1.001 .3338414 .5895055 .3534554 .1179710 

1.0001 .1613753 .3232849 .1309153 .0632936 

TABLE 6: Minimal CIR's with w = 2 in H 
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For a GCIR with w = 2/n, the norm of the error functional is given by: 

(r, r) =7r _ 2 , (1 -X2)1/2 + o(1) + 2 + i(f) p 

This yields the corresponding theorem: 
THEOREM 6. For the minimization of (r, r), all sets of n abscissae in (-1, 1) are 

equally good insofar as the highest order term in (p - l/p)-' is concerned. Any such 
set increases (r, r) asymptotically by (2/n)(p - 1/p)-'. 

We summarize the results of this section in Table 1. 

6. Tables. In Table 2, asymptotic GCIR's as p -* o are given for n = 8, 10, 11, 
12, 13. The weight w is 2/n. Since the rules are symmetric, only nonnegative ab- 
scissae are given. Double nodes are indicated by underlining. k is the degree of the 
first power xk not integrated exactly by the rule. 

In Tables 3-6, we give minimal CIR's with 3 and 6 points for various values 
of a = !(Vp + 1/ Vp). These rules show the asymptotic behavior both for p -* 

and for p -> 1. In Tables 3 and 4 are given minimal CIR's in L2(8p) and H2(Ep) re- 
spectively, while in Tables 5 and 6 are given corresponding minimal CIR's subject 
to the constraint w = 2/n. Since all rules computed are symmetric, only positive 
abscissae are tabulated, so that the 3-point rule consists of the tabulated abscissa 
x, 0, and -x. All rules were computed by minimizing the norm of the error func- 
tional as a function of the abscissae and weight, where pertinent, using the method 
of Fletcher and Powell [4]. 

Remark. In Tables 3 and 6, we observe convergence of the abscissae to zero as 
p -4 1. We conjecture that this is true for all n; however, our theory is unable to 
prove such behavior since it takes into account only first-order terms. 
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